Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells.
نویسندگان
چکیده
The current investigation aimed to develop a biomimetic, three-dimensional (3D) culture system for poorly adherent bone metastatic prostate cancer cells (C4-2B) for use as an in vitro platform for anti-cancer drug screening. To this end, hyaluronic acid (HA) derivatives carrying complementary aldehyde (HAALD) and hydrazide (HAADH) groups were synthesized and characterized. In situ encapsulation of C4-2B cells was achieved by simple mixing of HAALD and HAADH in the presence of the cells. Unlike two-dimensional (2D) monolayer culture in which cells adopt an atypical spread morphology, cells residing in the HA matrix formed distinct clustered structures which grew and merged, reminiscent of real tumors. Anti-cancer drugs added to the media surrounding the cell/gel construct diffused into the gel and killed the embedded cells. The HA hydrogel system was used successfully to test the efficacy of anti-cancer drugs including camptothecin, docetaxel, and rapamycin, alone and in combination, including specificity, dose and time responses. Responses of cells to anti-neoplastics differed between the 3D HA hydrogel and 2D monolayer systems. We suggest that the data obtained from 3D HA systems is superior to that from conventional 2D monolayers as the 3D system better reflects the bone metastatic microenvironment of the cancer cells.
منابع مشابه
In Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration
Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...
متن کاملMultilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures.
Validation of a high-throughput compatible 3D hyaluronic acid hydrogel coculture of cancer cells with stromal cells. The multilayered hyaluronic acid hydrogels improve drug screening predictability as evaluated with a panel of clinically relevant chemotherapeutics in both prostate and endometrial cancer cell lines compared to 2D culture.
متن کاملA hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics.
Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesize...
متن کاملRecreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids.
Cancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed a...
متن کاملEvaluation of Anti-cancer activity of Boswellic acid and Montelukast sodium against human prostate cancer cell line PC-3
Prostate cancer is a devastating disease for which current therapies are inadequate. Various lines of evidences have suggested the 5-lipoxygenase (5-LOX) pathway and the leukotriene receptor pathway are potential targets for prevention or treatment of Prostate cancer. Thus, search for new anti-cancer drugs targeting 5-LOX and leukotriene is very essential and important. The objective of the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 30 30 شماره
صفحات -
تاریخ انتشار 2009